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Outline

• Some motivating questions
– Radiation closure at higher order
– Different budgets

• Method
– A (new) set of Kernels for TOA/SFC/ATM radiation

• Case of ENSO
– Importance to get cloud radiative sensitivity right

• Case of Arctic Sea Ice
– (non)Linearity issue and a proposed NN model for 

feedback analysis 



Use of radiation data

• Monitoring/characterizing 
weather & climate
• Validating models 

(theories)

Pre-satellite era: Rocket view of the Earth

First meteor. satellite (Explorer 7: 
Oct 13, 1959) : an Earth radiation 
budget instrument



Use of radiation data

• Monitoring/characterizing 
weather & climate
• Validating models 

(theories)
– Average Radiation (R) : 

GCM GM Bias < 1 Wm-2

– Variation of R (∆R) : 
Spatial/temporal bias ~10 
Wm-2

=> Next objective: Radiation 
closure of ∆R

Annu. OLR, GFDL GCMs vs. CERES [Zhao et al. 2016]
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Forcing + Feedback => Climate Change

∆R = F + l∆T … (1)
T: surface temperature; R: net radiation; F: radiative forcing 
l : Sensitivity (feedback) parameter = lPlanck+lwater vapor +llapse-rate +lcloud + lalbedo +…

𝜆" = Δ𝑅"/Δ𝑇 [W m-2 K-1]
A popular kernel method for measuring Δ𝑅"

Non-cloud: Δ𝑅" = 𝐾" ) Δ𝑋,    𝐾" = ⁄,-
,"

Cloud: Δ𝑅. = Δ𝑅 − ∑Δ𝑅"

IPCC AR5 Fig 9.43

To validate climate feedback (l) it is 
essential to get Δ𝑅" right, i.e., to 
achieve radiation closure with Δ𝑅!



Need to keep ∆R(GCM) 
checked

• Is GCM cloud feedback too positive?
– Obs-model (CERES vs CMIP3) comparisons 

suggest too positive radiative feedback in 
GCMs. [Spencer&Braswell 2011].

– Exchanges between Lindzen&Choi 2009, 2011, 
Spencer&Braswell 2011; Murphy 2010, 
Trenberth 2010, Dessler 2011; Trenberth 2011, 
…

• Updates : New GCMs, longer CERES record, 
different budgets, …

R-T lead/lag regression [S&B2011]
R: CERES (upward positive); 
T: HadCRUT3

“Glaring” bias in central-east Pacific [Dessler 2013]



Importance of different 
budgets: regional

• In Tropics, noted in earlier 
studies is a strong negative SW 
feedback at surface in central 
Pacific during ENSO. Remaining 
questions:
– ATM budget and linkage to 

Bjerknes feedback?
• In Arctic, direct drive of sea ice 

variability is surface (as opposed 
to TOA) radiation.
– Cloud vs. albedo?

SST, ISCCP SW [Waliser et al. 1994]

d(SW) < 0

dT > 0

Sign definition: Rad. flux is downward positive.

Need to analyze Δ𝑅 with respect to 
SFC and ATM budgets.



A SET OF KERNELS FOR ANALYZING ∆RX
AT TOA AS WELL AS SFC AND ATM



Radiative 
kernels

• Computation of 𝐾"

𝐾" =
,-
,"
≈ [

]
𝑅 𝑋 + ∆𝑋 −

𝑅 𝑋 /∆𝑋
𝑅 𝑋 : RRTM 
𝑋: ERAi
Global 2.5ox2.5o, 5 years’ 6-
hourly atmos profiles used to 
compute KX, and then 
averaged at each grid point 
for every calendar month. 
[Huang et al. 2017 JGR]
• TOA kernels in agreement 

with other kernel sets

Water vapor kernel Temperature kernel

Shell Shell

SodenSoden

Huang Huang

TOA radiative kernels
Units: W m-2 K-1 / 100 hPa



Atmospheric 
radiation kernel
• Ratm=Rtoa-Rsfc : positive 

downward (warming)
a, b) Zonal and annual mean 
atmospheric temperature and 
water vapor kernel. 
c, d, e) Annual mean surface 
temperature, vertically 
integrated atmospheric 
temperature and water vapor 
kernels. 
f) The sum of c-e: atmospheric 
radiation change when the 
surface and atmosphere 
uniformly warm by 1K while 
conserving relative humidity.

ATM radiative kernels
Units: W m-2 K-1 / 100 hPa



Validation – Radiation Closure Test

• Radiation closure test: 
comparison between GCM-
simulated clear-sky radiation 
anomaly and that 
reproduced by the kernels: 

∆𝑅67689= :𝐾"∆𝑋

• Test 1: global warming
• Test 2: unforced internal 

variability 

Units: W m-2

Global mean radiation 
anomaly in a CESM 100-

yr control experiment. 

?

year year

Radiation anomaly in a CESM 2xCO2 experiment
GCM-simulated Kernel-diagnosed 
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ENSO



Radiation anomaly associated with ENSO 

ENSO drives tropical and global radiation anomalies [Loeb et al. 2012]

• Questions: 
- Respective radiative 

feedbacks Δ𝑅"/ ΔT ?
- Link to dynamics 

(Bjerknes) feedback
- How do GCMs do?



(Dis)Agreements in radiation fluxes [Kolly&Huang 2018]

• Atmospheric data
– ERAi
Temperature (T) 
Humidity (q)

• Radiation data
– CERES (All-sky)
– ERAi (Clear-sky)

• Radiation budget decomposition: kernel method
– Δ𝑅" = 𝐾" ) Δ𝑋 for non-cloud feedbacks, adjusted CRF [Shell et al. 2008] 

for Δ𝑅<97=>
– ERAi atmosphere-based kernels [Huang et al. 2017]

• “Feedback”
– 𝜆" = 𝑟𝑒𝑔𝑟 ∆𝑅", 𝑆𝑆𝑇 :	monthly rad anomaly regressed to Nino3.4 SST
units: W m-2 K-1

Method and data

DiscrepancyAgreement



TOA feedback

𝜆"
= 𝑟𝑒𝑔𝑟 ∆𝑅", 𝑆𝑆𝑇

• TOA Δ𝑅
decomposed into 
feedbacks using 
kernel method.

• Significant LW and 
SW anomalies (>10 
W/m2 regional) in 
ENSO.

• Dominated by 
cloud feedback, 
neutralized after 
LW-SW 
compensation (c.f. 
the debate).

Overall

ATM T

SFC T

WV

Cloud



CESM

CanESM

GFDL/CM3

HadGEM

IPSL/CM5

𝜆.FG, 𝜆.HG:
𝜆.IJK:✘

=> 

Δ𝑅. =

(
𝜕𝑅FG

𝜕𝐶

+
𝜕𝑅HG

𝜕𝐶
) ) ΔC

• The positive bias 
in cloud feedback 
persists in CMIP5 
models. 
[Kolly&Huang 2018].

Important 
but 
challenging 
to improve!



𝜆" = 𝑟𝑒𝑔𝑟 ∆𝑅", 𝑆𝑆𝑇 :	Radiation anomaly regressed to Nino3.4 
SST

Overall

ATM T

SFC T

WV

Cloud

SFC

𝜆"
= 𝑟𝑒𝑔𝑟 ∆𝑅", 𝑆𝑆𝑇

• SFC Δ𝑅
decomposed into 
feedbacks using 
kernel method.

• Significant SW 
anomalies (>10 
W/m2) in central 
Pacific.

• Dominated by 
cloud feedback; no 
LW-SW 
compensation – a 
significant negative 
feedback to SST 
change [Waliser
94].



Atmosphere

Ocean

𝑫𝒂

SW LW

𝑫𝒐

SH LH

𝝏𝑬𝒂
𝝏𝒕

SW LWdRc
dRw

dRc
dRw

dRt
dRts

dRc
dRw

dRc
dRw

dRt
dRts
-0.53

-8.50 9.91-8.93 0.39 8.56
3.99

-1.57

-13.06

The energy balance in Central Pacific (5N~5S, 180E~240E)

-8.52 -1.46
0.10-9.67 1.16 1.42

3.19
-1.42 -6.60

-3.14

𝝏𝑬𝒐
𝝏𝒕

𝜆" = 𝑟𝑒𝑔𝑟 ∆𝑅", 𝑆𝑆𝑇 [W/(m2 K)]
Radiative fluxes: CERES + Kernel decomposition
Non-radiative: ERAi

• TOA:
SW(-) ~ 
LW(+)

• SFC
SWcloud(-) + 
LH(-)

• ATM
LWcloud(+) 
~ 𝐷8(-)



The energy balance in Central Pacific (5N~5S, 180E~240E)

• TOA:
SW(-) ~ LW(+)

• SFC
SWcloud(-) + LH(-)

• ATM
LWcloud(+) ~ 𝐷8(-)

𝜆" = 𝑟𝑒𝑔𝑟 ∆𝑅", 𝑆𝑆𝑇 [W/(m2 K)]
Radiative fluxes: CERES + Kernel decomposition
Non-radiative: ERAi

Feedback TOA SFC ATM

SW -8.50 -9.67 1.17

dRc -8.93 -8.52 -0.41

dRw 0.39 -1.46 1.85

LW 9.91 1.16 8.75

dRc 8.56 0.10 8.46

dRw 3.99 3.19 0.80

dRt -1.57 1.42 -2.99

dRts -0.53 -3.14 2.61

SH -1.42 1.42

LH -6.60 6.60

netRad 1.42 -8.51 9.93

Hori. Transp. -13.06

• Cloud LW heating is the 
#1 energy source that 
drives the anomalous 
circulation (𝐷8)



ATM

𝜆"
= 𝑟𝑒𝑔𝑟 ∆𝑅", 𝑆𝑆𝑇

• ATM Δ𝑅
decomposed into 
feedbacks using 
kernel method.

• Significant LW 
anomalies (>10 
W/m2) in central 
Pacific.

• Dominated by 
cloud feedback; no 
LW-SW 
compensation – a 
significant negative 
feedback to SST 
change [Waliser
94].

Overall
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TOA

SFC

ATM

SW LW NET
Cloud feedback

• Different perspectives to think of the neutralized TOA cloud (overall) radiative feedback in ENSO
- SW-LW compensation
- SFC-ATM compensation

• Implications
- SFC SW: negative feedback [Waliser 94]
- ATM LW: positive feedback (via Bjerknes feedback: differential heating of cent. Pac. and warm pool => 

circulation and surface wind change => amplification of ∆SST) [Kolly&Huang 18]



Cloud feedback: differential heating

• Different perspectives to think of the neutralized TOA cloud (overall) radiative feedback in ENSO
- SW-LW compensation
- SFC-ATM compensation

• Implications
- SFC SW: negative feedback [Waliser 94]
- ATM LW: positive feedback (via Bjerknes feedback: differential heating of cent. Pac. and warm pool => 

circulation and surface wind change => amplification of ∆SST) [Kolly&Huang 18]

A strong correlation between change in tropical 
circulation strength and radiative differential heating 
is observed in CMIP5 models [Xia&Huang 2017]

heatingcooling



ARCTIC SEA ICE AND RADIATION



Kato et al. 2006
Radiation questions in 

sea ice problem
• Is there a strong (negative) cloud 

feedback to SI change?
– Early studies: yes [Kato 2006, etc.];
– Longer record: no [Hartmann&Ceppi

2014, etc.] 
• Does radiation predict SI?

– June dR predicts September SIE [Choi 
et al. 2014; Zhan&Davies 2016]

Hartmann Ceppi 2014
Zhan&Davies 2016



I have no answer …
But a caution

29

NSIDC Sea Ice Extent: Sep. 2012
Orange: 1979-2000 medium
• Arctic presents the largest 

climate and radiative 
perturbations.

• Linear (e.g., Kernel) method for measuring Δ𝑅"
Non-cloud: Δ𝑅" = 𝐾" ) Δ𝑋,    𝐾" = ⁄,-

,"
Cloud: Δ𝑅. = Δ𝑅 − ∑Δ𝑅"

• Issues: Linearity assumption
- Cloud feedback: residual term
- When Δ𝑋 is of large magnitude, o(Δ𝑋Y) in Taylor 
expansion?
- Coupling of different feedbacks, o(Δ𝑋Z[Δ𝑋\Y)? 

• Solution?
Predict R-X relationship with a computationally 
efficient, non-linear model - Neural Network (NN) 
and then evaluate feedback according to definition 
[Zhu et al. 2019]:

Δ𝑅" = 𝑅II 𝑋 + Δ𝑋 − 𝑅II 𝑋
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Non-closure when large ∆R perturbation

• Δ𝑅" = 𝐾" ) Δ𝑋 Albedo kernel KA is obtained by using 
small perturbation. If used to evaluated Δ𝑅] at large 
albedo changes, potentially non-closure! 

SW radiation anomaly of 
September 2012. Units: W m-2

Noticeable non-closure 
in ∆R decomposition!
[Zhu et al. 2019]

R(x)

X



I have no answer …
But a caution
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• Linear (e.g., Kernel) method for measuring Δ𝑅"
Non-cloud: Δ𝑅" = 𝐾" ) Δ𝑋,    𝐾" = ⁄,-

,"
Cloud: Δ𝑅. = Δ𝑅 − ∑Δ𝑅"

• Issues: Linearity assumption
- Cloud feedback: residual term
- When Δ𝑋 is of large magnitude, o(Δ𝑋Y) in Taylor 
expansion?
- Coupling of different feedbacks, o(Δ𝑋Z[Δ𝑋\Y)? 

• Solution?
Predict R-X relationship with a computationally 
efficient, non-linear model - Neural Network (NN) 
and then evaluate feedback according to definition 
[Zhu et al. 2019]:

Δ𝑅" = 𝑅II 𝑋 + Δ𝑋 − 𝑅II 𝑋

NSIDC Sea Ice Extent: Sep. 2012
Orange: 1979-2000 medium
• Arctic presents the largest 

climate and radiative 
perturbations.



ERA interim 
dataset

Neural Network Method
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INPUT:
Atmos State

X

f2

f1

f1

f1

…

x0

x1

xn1

y

Wij∈R(n1+1)*n2 Wj∈Rn2

…
c

Input layer Hidden layer Output layer
TOA Outgoing Longwave Radiation

TOA Net Incoming Shortwave Radiation

OUTPUT:
Rad Flux

R

[Zhu et al. 2019]



Feedbacks: Kernel vs. NN
• Context: Interannual variation
• Δ𝑅" and Δ𝑇 time series: deseasoned and 

detrended; 2007-2016 (not used in training)
• NN very well reproduces the global mean overall 

feedback Δ𝑅67689 from the ERAi data and 
feedbacks Δ𝑅" analyzed from the kernel method.

TO
A 
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[Zhu et al. 2019]
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Nonlinearity in albedo feedback

• Δ𝑅" = 𝐾" ) Δ𝑋 Albedo kernel KA is obtained by using 
small perturbation. If used to evaluated Δ𝑅] at large 
albedo changes, potentially non-closure! 

SW radiation anomaly of 
September 2012. Units: W m-2

R(x)

X

Better closure is achieved. 
[Zhu et al. 2019]



Take home messages
• CERES and continued radiation measurements: essential for validating GCMs 

wrt Δ𝑅 closure. 
• Cloud radiative feedback in ENSO is to cool Central Pacific (a negative feedback) 

at ocean surface but to warm the atmosphere above, which creates a 
differential heating between the Central Pacific and Warm Pool regions (a 
positive feedback). 

• GCMs generally biased (too positive) wrt TOA cloud feedback in ENSO. The issue 
is more in radiative sensitivity (,-

,.
) than cloud response (ΔC).

• Large climate perturbations, such as Arctic sea ice melts, create nonlinearity in 
radiative response, which requires nonlinear approaches for accurate feedback 
quantification. 
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